45 research outputs found

    Permutation groups and transformation semigroups : results and problems

    Get PDF
    J.M. Howie, the influential St Andrews semigroupist, claimed that we value an area of pure mathematics to the extent that (a) it gives rise to arguments that are deep and elegant, and (b) it has interesting interconnections with other parts of pure mathematics. This paper surveys some recent results on the transformation semigroup generated by a permutation group G and a single non-permutation a. Our particular concern is the influence that properties of G (related to homogeneity, transitivity and primitivity) have on the structure of the semigroup. In the first part of the paper, we consider properties of S= such as regularity and generation. The second is a brief report on the synchronization project, which aims to decide in what circumstances S contains an element of rank 1. The paper closes with a list of open problems on permutation groups and linear groups, and some comments about the impact on semigroups are provided. These two research directions outlined above lead to very interesting and challenging problems on primitive permutation groups whose solutions require combining results from several different areas of mathematics, certainly fulfilling both of Howie's elegance and value tests in a new and fascinating way.PostprintPeer reviewe

    Constructing flag-transitive, point-imprimitive designs

    Get PDF
    We give a construction of a family of designs with a specified point-partition and determine the subgroup of automorphisms leaving invariant the point-partition. We give necessary and sufficient conditions for a design in the family to possess a flag-transitive group of automorphisms preserving the specified point-partition. We give examples of flag-transitive designs in the family, including a new symmetric 2-(1408,336,80) design with automorphism group 2^12:((3⋅M22):2) and a construction of one of the families of the symplectic designs (the designs S^−(n) ) exhibiting a flag-transitive, point-imprimitive automorphism group.PostprintPeer reviewe

    The classification of partition homogeneous groups with applications to semigroup theory

    Get PDF
    Let λ=(λ1,λ2,...) be a partition of n, a sequence of positive integers in non-increasing order with sum n. Let Ω:={1,...,n}. An ordered partition P=(A1,A2,...) of Ω has type λ if |Ai|=λi.Following Martin and Sagan, we say that G is λ-transitive if, for any two ordered partitions P=(A1,A2,...) and Q=(B1,B2,...) of Ω of type λ, there exists g ∈ G with Aig=Bi for all i. A group G is said to be λ-homogeneous if, given two ordered partitions P and Q as above, inducing the sets P'={A1,A2,...} and Q'={B1,B2,...}, there exists g ∈ G such that P'g=Q'. Clearly a λ-transitive group is λ-homogeneous.The first goal of this paper is to classify the λ-homogeneous groups (Theorems 1.1 and 1.2). The second goal is to apply this classification to a problem in semigroup theory.Let Tn and Sn denote the transformation monoid and the symmetric group on Ω, respectively. Fix a group H<=Sn. Given a non-invertible transformation a in Tn-Sn and a group G<=Sn, we say that (a,G) is an H-pair if the semigroups generated by {a} âˆȘ H and {a} âˆȘ G contain the same non-units, that is, {a,G}\G= {a,H}\H. Using the classification of the λ-homogeneous groups we classify all the Sn-pairs (Theorem 1.8). For a multitude of transformation semigroups this theorem immediately implies a description of their automorphisms, congruences, generators and other relevant properties (Theorem 8.5). This topic involves both group theory and semigroup theory; we have attempted to include enough exposition to make the paper self-contained for researchers in both areas. The paper finishes with a number of open problems on permutation and linear groups.PostprintPeer reviewe

    Between primitive and 2-transitive : synchronization and its friends

    Get PDF
    The second author was supported by the Fundação para a CiĂȘncia e Tecnologia (Portuguese Foundation for Science and Technology) through the project CEMAT-CIÊNCIAS UID/Multi/ 04621/2013An automaton (consisting of a finite set of states with given transitions) is said to be synchronizing if there is a word in the transitions which sends all states of the automaton to a single state. Research on this topic has been driven by the ČernĂœ conjecture, one of the oldest and most famous problems in automata theory, according to which a synchronizing n-state automaton has a reset word of length at most (n − 1)2 . The transitions of an automaton generate a transformation monoid on the set of states, and so an automaton can be regarded as a transformation monoid with a prescribed set of generators. In this setting, an automaton is synchronizing if the transitions generate a constant map. A permutation group G on a set ℩ is said to synchronize a map f if the monoid (G, f) generated by G and f is synchronizing in the above sense; we say G is synchronizing if it synchronizes every non-permutation. The classes of synchronizing groups and friends form an hierarchy of natural and elegant classes of groups lying strictly between the classes of primitive and 2-homogeneous groups. These classes have been floating around for some years and it is now time to provide a unified reference on them. The study of all these classes has been prompted by the ČernĂœ conjecture, but it is of independent interest since it involves a rich mix of group theory, combinatorics, graph endomorphisms, semigroup theory, finite geometry, and representation theory, and has interesting computational aspects as well. So as to make the paper self-contained, we have provided background material on these topics. Our purpose here is to present recent work on synchronizing groups and related topics. In addition to the results that show the connections between the various areas of mathematics mentioned above, we include a new result on the ČernĂœ conjecture (a strengthening of a theorem of Rystsov), some challenges to finite geometers (which classical polar spaces can be partitioned into ovoids?), some thoughts about infinite analogues, and a long list of open problems to stimulate further work.PostprintPeer reviewe

    Generating sets of finite groups

    Get PDF
    We investigate the extent to which the exchange relation holds in finite groups G. We define a new equivalence relation ≡m, where two elements are equivalent if each can be substituted for the other in any generating set for G. We then refine this to a new sequence ≡(r)/m of equivalence relations by saying that x≡(r)/m y if each can be substituted for the other in any r-element generating set. The relations ≡(r)/m become finer as r increases, and we define a new group invariant ψ(G) to be the value of r at which they stabilise to ≡m. Remarkably, we are able to prove that if G is soluble then ψ(G) ∈ {d(G),d(G)+1}, where d(G) is the minimum number of generators of G, and to classify the finite soluble groups G for which ψ(G)=d(G). For insoluble G, we show that d(G) ≀ ψ(G) ≀ d(G)+5. However, we know of no examples of groups G for which ψ(G) > d(G)+1. As an application, we look at the generating graph of G, whose vertices are the elements of G, the edges being the 2-element generating sets. Our relation ≡(2)m enables us to calculate Aut(Γ(G)) for all soluble groups G of nonzero spread, and give detailed structural information about Aut(Γ(G)) in the insoluble case.PostprintPeer reviewe

    Integrals of groups

    Get PDF
    Funding: Fundação para a CiĂȘncia e a Tecnologia (CEMAT-CiĂȘncias FCT project UID/Multi/04621/2013).An integral of a group G is a group H whose derived group (commutator subgroup) is isomorphic to G. This paper discusses integrals of groups, and in particular questions about which groups have integrals and how big or small those integrals can be. Our main results are: - If a finite group has an integral, then it has a finite integral. - A precise characterization of the set of natural numbers n for which every group of order n is integrable: these are the cubefree numbers n which do not have prime divisors p and q with q | p-1. - An abelian group of order n has an integral of order at most n1+o(1), but may fail to have an integral of order bounded by cn for constant c. - A finite group can be integrated n times (in the class of finite groups) for every n if and only if it is a central product of an abelian group and a perfect group. There are many other results on such topics as centreless groups, groups with composition length 2, and infinite groups. We also include a number of open problems.PostprintPeer reviewe

    The Hall–Paige conjecture, and synchronization for affine and diagonal groups

    Get PDF
    The Hall-Paige conjecture asserts that a finite group has a complete mapping if and only if its Sylow subgroups are not cyclic. The conjecture is now proved, and one aim of this paper is to document the final step in the proof (for the sporadic simple group J4). We apply this result to prove that primitive permutation groups of simple diagonal type with three or more simple factors in the socle are non-synchronizing. We also give the simpler proof that, for groups of affine type, or simple diagonal type with two socle factors, synchronization and separation are equivalent. Synchronization and separation are conditions on permutation groups which are stronger than primitivity but weaker than 2-homogeneity, the second of these being stronger than the first. Empirically it has been found that groups which are synchronizing but not separating are rather rare. It follows from our results that such groups must be primitive of almost simple type.PostprintPeer reviewe

    Infinitely many reducts of homogeneous structures

    Get PDF
    Funding: National Research, Development and Innovation Fund of Hungary, financed under the FK 124814 funding scheme (second author).This work is dedicated to TamĂĄs E. Schmidt. It is shown that the countably infinite dimensional pointed vector space (the vector space equipped with a constant) over a finite field has infinitely many first order definable reducts. This implies that the countable homogeneous Boolean-algebra has infinitely many reducts.PostprintPeer reviewe

    Primitive groups, graph endomorphisms and synchronization

    Get PDF
    The third author has been partially supported by the Fundação para a CiĂȘncia e a Tecnologia through the project CEMAT-CIÊNCIAS UID/Multi/04621/2013.Let Ω be a set of cardinality n, G be a permutation group on Ω and f:Ω→Ω be a map that is not a permutation. We say that G synchronizes f if the transformation semigroup ⟹G,f⟩ contains a constant map, and that G is a synchronizing group if G synchronizes every non-permutation.  A synchronizing group is necessarily primitive, but there are primitive groups that are not synchronizing. Every non-synchronizing primitive group fails to synchronize at least one uniform transformation (that is, transformation whose kernel has parts of equal size), and it had previously been conjectured that this was essentially the only way in which a primitive group could fail to be synchronizing, in other words, that a primitive group synchronizes every non-uniform transformation.  The first goal of this paper is to prove that this conjecture is false, by exhibiting primitive groups that fail to synchronize specific non-uniform transformations of ranks 5 and 6. As it has previously been shown that primitive groups synchronize every non-uniform transformation of rank at most 4, these examples are of the lowest possible rank. In addition, we produce graphs with primitive automorphism groups that have approximately √n non-synchronizing ranks, thus refuting another conjecture on the number of non-synchronizing ranks of a primitive group. The second goal of this paper is to extend the spectrum of ranks for which it is known that primitive groups synchronize every non-uniform transformation of that rank. It has previously been shown that a primitive group of degree n synchronizes every non-uniform transformation of rank n−1 and n−2, and here this is extended to n−3 and n−4.  In the process, we will obtain a purely graph-theoretical result showing that, with limited exceptions, in a vertex-primitive graph the union of neighbourhoods of a set of vertices A is bounded below by a function that is asymptotically √|A|. Determining the exact spectrum of ranks for which there exist non-uniform transformations not synchronized by some primitive group is just one of several natural, but possibly difficult, problems on automata, primitive groups, graphs and computational algebra arising from this work; these are outlined in the final section.PostprintPeer reviewe

    Dental calculus in lead workers

    Get PDF
    UsporedivĆĄi učestalost ,i količinu zubnog kamenca kod radnika eksponiranih olovu s nalazima kod neeksponiranih, autor je ustanovio razlike. Iz ovog se saopćenja vide razlike u kvantitativnoj analizi zubnog kamenca s obzirom na sadrĆŸaj olova.Examining the oral cavity of workers in a storage battery plant and in a lead mine and smelting plant the author noticed a high incidence of dental calculus. In order to prove if lead particles are the cause of the increased amount of dental calculus a quantitative analysis of dental calculus was carried out. The analysis, compared with figures of non-exposed persons, showed a higher percentage of lead particles in lead workers. The lead tin dental calculus may be deposited in the surrounding gum tissue
    corecore